

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 10.03.2020 –

Teacher: Prof. Chiara Saffirio

Assistent: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $f, g \in \mathcal{S}(\mathbb{R}^d)$. Recall that in class we proved

$$\widehat{f * g} = (2\pi)^{\frac{d}{2}} \widehat{f} \widehat{g}. \quad (1)$$

Prove that

$$\widehat{f * g} = (2\pi)^{\frac{d}{2}} \widehat{f} \widehat{g}. \quad (2)$$

Hint: Consider the equivalent statement of (1) for the inverse of the Fourier transform and apply it to $\widehat{f} \widehat{g}$.

Exercise 2

Let \mathcal{H} be an Hilbert space and V a closed linear subspace of \mathcal{H} .

a In class we proved that for any $f \in \mathcal{H}$ there exists an element $g_f \in V$ such that

$$\|f - g_f\| = \min_{h \in V} \|f - h\|. \quad (3)$$

Prove that g_f is the unique element of V that satisfies the minimum.

b In class we proved that g_f is such that $f - g_f \in V^\perp$. Prove that there is no other element $h \in V$ such that $f - h \in V^\perp$.

Exercise 3

Let \mathcal{H} be an Hilbert space. Prove that there exists a basis for \mathcal{H} . Prove moreover that \mathcal{H} is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn's Lemma to the set of (also infinite) orthonormal systems ordered by inclusion. Prove that any maximal orthonormal system is a base, i.e. is dense.

For the second part prove and use the following fact: if f is an element of \mathcal{H} and S is a basis for \mathcal{H} , there exists a sequence of elements $\{e_n\}_{n \in \mathbb{N}} \subseteq S$ such that $f \in \text{span}_{\mathbb{K}} \{e_n\}_{n \in \mathbb{N}}$.

Exercise 4

Let A, B bounded operators on an Hilbert space \mathcal{H} and $\alpha, \beta \in \mathbb{C}$. Prove the following equalities:

$$\text{id}^* = \text{id} \quad (4)$$

$$(A^*)^* = A \quad (5)$$

$$(AB)^* = B^*A^* \quad (6)$$

$$(\alpha A + \beta B)^* = \bar{\alpha}A^* + \bar{\beta}B^*. \quad (7)$$

Moreover, prove that A^* is bounded and that $\|A^*\| = \|A\|$.